Thats simple! h(x)= [tex] \frac{x^{2}+3x }{4x+27} [/tex] find h(-8) All we need to do is PLUG IN THE -8 h(-8)= [tex] \frac{(-8)^{2}+3(-8) }{4(-8)+27} [/tex] =[tex] \frac{64-24}{-32+27} [/tex] (negative²=positive, negative×positive=negative) =[tex] \frac{40}{-5} [/tex] h(-8)=-8