Answer:
Solve the equation:
[tex]x+y =11[/tex] ......[1]
xy = 30 .......[2]
we can write equation [2] as;
[tex]x= \frac{30}{y}[/tex]
Substitute the value of x in [1] we have;
[tex]\frac{30}{y}+y =11[/tex]
or
[tex]\frac{30+y^2}{y} =11[/tex]
[tex]y^2+30 = 11y[/tex]
or
[tex]y^2-11y+30 = 0[/tex]
[tex]y^2-6y-5y+30 = 0[/tex]
[tex]y(y-6)-5(y-6)=0[/tex]
[tex](y-5)(y-6)=0[/tex]
By zero product property, we have;
y = 5 and y = 6
Substitute these y values in [1] we get
For y =5 we have;
x +5 =11
Subtract both sides by 5 we get;
x = 6
For y = 6 ;
x +6 =11
Subtract 6 from both sides we get;
x = 5
Therefore, the values of x and y satisfy the given equation are:
if x = 6 then y = 5
and
if x =5 then y = 6